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An over-relaxation procedure is applied to the MacCormack finite-difference scheme in 
order to reduce the computation time required to obtain a steady-state solution. The imple- 
mentation of this acceleration procedure to an existing computer program using the regular 
MacCormack method is extremely simple and does not require additional storage. The 
over-relaxation procedure does not alter the steady-state solution, which is second-order 
accurate. The method is !irst applied to Burgers’ equation. A stability condition and an 
expression for the increase in the rate of convergence are derived. The method is then 
applied to the calculation of the hypersonic viscous flow over a flat plate, using the complete 
Navier-Stokes equations, and the inviscid flow over a wedge. Reductions in computing 
time by factors of 3 and 1.5, respectively, are obtained by over-relaxation. 

INTRODUCTION 

Because of the mixed elliptic-hyperbolic nature of the steady, compressible, 
Navier-Stokes equations, difficulties are encountered when attempting to solve these 
partial differential equations using a finite-difference technique. This problem is 
usually overcome by integrating the unsteady equations, which are mixed hyperbolic- 
parabolic in nature, forward in time until a steady-state solution is obtained. One of 
the most popular finite-difference schemes for solving fluid flow problems in this 
manner is MacCormack’s scheme [l-2]. This explicit method is simple to program 
and is second-order accurate in time and space. However, this method often requires a 
large amount of computational time to obtain the steady-state solution because of the 
stability constraint. This is particularly true when a very tie mesh is employed. 

To reduce computing time, some authors have developed implicit methods which 
are not limited by stability constraints, but are limited by accuracy considerations. 
However, the logic of these schemes is more complicated and the computational time 
required per step of integration is greater. In some cases, an implicit method may 
require more computational time to reach steady state than an explicit method. For 
example, Rudy et al. [3] have tested several numerical methods which solve a free 
shear layer problem using the compressible Navier-Stokes equations. They found 
that a sequential alternating-direction implicit (ADI) finite-difference procedure 
requires longer computing times to reach steady state than an explicit hopscotch 
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finite-difference procedure. This is in spite of the fact that the ADI method permits a 
time step which is almost 10 times larger than the explicit scheme. 

The goal of the present study has been to increase the rate of convergence of 
MacCormack’s explicit finite-difference scheme by applying an over-relaxation 
technique. This method has first been applied to the one-dimensional Burgers’ 
equation and has then been tested on two example flow problems: (1) the hyper- 
sonic viscous flow over the sharp leading edge of a flat plate; (2) the inviscid flow 
over a wedge. 

APPLICATION TO BURGERS' EQUATION 

For simplicity, the over-relaxation scheme is initially applied to Burgers’ equation. 
This equation serves as a model equation for the Navier-Stokes equations. 

Method 

The one-dimensional Burgers’ equation is 

where t and x represent time and distance in the x direction, respectively, U(X, t) is 
a scalar function, and u is a specified constant. After MacCormack’s scheme is 
applied to the linearized form of Eq. (I), 

(where c is a constant), over-relaxation can be applied to both sequences of predicted 
and corrected values in the following manner: 

Predictor step: 

t,jn+1 = ujn - At k4+1 - u[(ujn+1 - Uj”)/LlX]] - [CUjn - a[(z4jn - 4-IWII 
Ax 

= Uj” - Ir(& - I$“> + p(ujn+1 + uj”-1 - 2ujn1, (3) 

$+I = gjn + (@;+I - Uj”). (4) 

Corrector step: 

e+1 
,;+l = fijn+l - At 

[CE, - a[@;;; - ii;“)/Ax]] - [cuj”tll - ~[(ii:+~ - ur”-:l)/Ax]] 
Ax 

= q+1 - ‘(qfl - ii;?..> + p”(qy; + ii;:; - 2$fl), (5) 

*;+I zzz Uj” + aJ(,;+l - Uj”). (6) 
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In these equations, the V’S are intermediate quantities, the u’s denote the tial 
predictions, c and w are the over-relaxation parameters, and v and p are given by 

u = c At/Ax, 

p = u At/Ax2, 
(7) 

where At is the time step and Ax is the mesh spacing. The regular MacCormack scheme 
is obtained by setting,& = 1 and o = 6. 

Clearly, the tr quantities do not need to be stored in arrays. Equations (4) and (6) 
require no additional storage if a simple overwriting procedure is employed. For 
example, in Eq. (4) fijn can be overwritten by cy+‘. The implementation of the over- 
relaxation steps does not affect the calculation of differences, which is the largest 
part of the computational effort for most problems. Also note that, when B # 1, the 
corrected values are coupled with the predicted values and these also need to be 
initialized. Upon defining 

vjn = g] (8) 

and eliminating the u quantities in Eqs. (3)-(6), the following (vector) finite-difference 
equation is obtained: 

where the Ai’s are the matrices 

Ao = [ 
1 - 8’ W(1 + V - 2/L.) 

w(1 - 9)(1 - v - 24 1 + w[8(6$ - 4~ + 1 - 2~3 

A1 = L(1 0 6) p 
4P - 4 

w8[(2p - v)(l - 2/L) + v”] 1 ’ 

A-1 = L(1 - i)(p + v) w4(2p + v);lP- 2p) + v’l 1 ’ 

A2 = r: hp(; - v) ’ 1 

Mod@ed Equation 

(9) 

I 11 ’ 

(10) 

When over-relaxation is only applied to the corrected values (B = l), any function 
u(x, t), defined by 

~(j AX, nl2 At) F ujn, (11) 
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where 52 = 2w, satisfies the modified equation [4]: 

-g+Cg-Ug 

=- c12Af (J-2 - 1) g 

+c[-$+@- l)cldt+ Q(3 6 252) (c &)2] A& 

+ k 
Ax2 - 6(l2 - 1) u dt + @2a - 3) 

12 2 
u(c At)2 

_ (4l2 - 1) Ax2 + 31R(21R2 - 4G + l)(c At)2 c2 At 
24 1 a4u I . . . . 

ax4 (12) 

Thus, the over-relaxation scheme is first-order accurate in time, but remains second- 
order accurate in space. However, the accuracy of the intermediate solutions is of no 
concern in this study. The over-relaxation process does not alter the steady-state 
solution, which remains second-order accurate for any value of 8. This fact can be 
seen from Eqs. (4) and (6), which become at the steady state: 

- - 
Uj = Vj, (13) 

uj = uj = (Uj + u&2. (14) 

Equations (13) and (14) are independent of the over-relaxation parameters and thus 
define the same solution given by the regular MacCormack scheme. 

Equation (12) has been derived assuming that the over-relaxation scheme is IR = 2w 
times faster than the regular scheme when 8 = 1. The verification, a posteriori, 
of the consistency of the scheme proves the validity of this assumption. 

Stability Analysis 

A Fourier stability analysis has been applied to Eq. (9). It has been found [4] that 
the method defined by (v, CL, G,, w) is stable if the roots X, , h, of the equation 

in which 
A” - 2PA + Q = 0, 

where 

P = 1 - [(CS + w)/2] + (h/2)R, 

Q = (6~ - l)(w - l), 

R = [I - 4p sin2(t?/2)12 - 4v2 sin2(8/2) - 2ui sin Ql 

satisfy the condition: 

Ma4 Al I, I A2 I) G 1 

for all the values of 0 in the interval [0, ~1. 

-, 4p sin2(0/2)] 

(15) 

(16) 

(17) 

(18) 
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Note that since 6~ and o appear symmetrically in the expressions of P and Q, 
the domain of stability for a given (v, p) is symmetric with respect to the line 8 = w 
in the (u, w) plane. Also, this domain is included in the region bounded by the arcs 
of the hyperbolas given by the equations Q = 1 and Q = - 1, since the condition 
I X,X, 1 < 1 must be enforced. This gives the necessary condition of stability 

I(f3 - l)(w - l)\ < 1. (19) 

For the heat equation, obtained by setting c = 0 in Eq. (2), no scheme operating 
with a value of p greater than 6 is stable. For values of p in the interval [t, +] the 
domain of stability is the square defined by the conditions 8 < 2 and w < 2. For 
values of p smaller than &, the method is stable if Eq. (19) is satisfied and 
(4 - Z(Cr, + w) + [1 + (1 - 4~)2]~u> > 0. For example, with d = 1, the stability 
condition is 4~( 1 - 2p)w < 1. 

For the complete linearized Burgers’ equation (c # 0 and u + 0), it has not been 
possible to express a necessary and sufficient stability condition in the form of an 
algebraic relation between the parameters V, CL, W, and o. Instead the roots h, and h, 
of Eq. (15) have been calculated numerically to determine the stable methods. In 
general, the stability condition is more restrictive than the conditions w < 2 and 
w < 2 unless a very small time step dt is employed. In particular, for some neigh- 
borhood of the point G = w = 2, the scheme is always unstable. 

Rate of Convergence 

An estimate of the reduction in computing time achieved by over-relaxation is 
derived in this section. 

Since the over-relaxation scheme is first-order accurate in time, sequences t, and t, 

can be defined such that 

iijn = Uj(f,) + O(dt”), (20) 

Ujn = Uj(t3 + O(dt’), (21) 

where uj(t) denotes the exact value of u at the point (Xi , t). In the above equations, 
the truncation terms involving dx which are assumed to have negligible influence 
on the rate of propagation of the numerical solution are omitted. If the time step 
used in the computation of step n + 1 is LI~,,+~ , the increase in the rate of convergence, 
Q n+1 9 by the over-relaxation process can then be defined by 

Q n-k1 = Ll - tTw”+l * (22) 

A limiting value for SZn+1 can be obtained as follows. Using the definition of t, 
(Eq. (21)) and Eq. (3), which defines a forward integration step over a time interval 
dt,+l , gives the expression 
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Equation (4) is an extrapolation formula which gives 

in+l = t, + q(t, + At,,,) - in] 
= in + WT, + At,+l), 

where LIT, = t, - t, . 
Similarly for the corrector step: 

and 

,;+1 = Uj(fn+l + A tn+l) + WAt2) 

t - t, + 4(fn+l + Ah+,) - 4 n+1 - 

= t, + w[(W - 1) 47, + (CT, + 1) flt,+J. 

(24) 

(25) 

(26) 

Combining (22), (24), and (26) gives 

and 

Q 
A 

n+l = w(oT, - 1) At::, + w(G + 1) (27) 

A~n+l = (~7, - l)(w - 1) A T, + [UJ(GJ + 1) - 4 At,,, . (28) 

If At,,, converges to At and if a strict inequality is assumed in (19), the sequence AT, 
converges to AT given by [4]: 

Ar = w(cl, + 1) - cl, 
1 - (8 - l)(w - 1) At (29) 

so that Q,,,, converges to 52 given by 

Q= 2&J 
1 - (CT, - l)(o - 1) . (30) 

Q represents an estimate of the number of times the over-relaxation scheme is faster 
than the regular scheme, when both schemes operate with the same time step. In the 
particular case w = 1, the value of Sz becomes 2w, which was previously derived. 
Note that 52 is a symmetric function of 8 and w. The contours of constant values of Q 
are hyperbolas orthogonal to the axis of symmetry of the domain of stability for 
specified (v, p). This domain is included in the nonshaded region of Fig. 1, but is not, 
a priori, identical to it. A theoretical study has been conducted [4] to determine, 
for various values of cAx/u, the maximum 52 for which the method is stable. This 
study has shown that the over-relaxation procedure gives better improvement in the 
rate of convergence when fine meshes are employed. These cases, for which the 
convergence of the regular scheme is very slow, are, in fact, the cases of most interest. 
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1 2 3 I 

OYER-RELAXATION PLRAIIETER. ; 

FIG. 1. A region including the domain of stability for specified v and p. 

Numerical Tests 

In the numerical tests involving Burgers’ equation, the following fIxed boundary 
conditions have been used: 

w t> = uo , u(L, t) = 0 (t > 0). (31) 

The initial conditions are arbitrary and have been chosen to be 

u(x, 0) = 0 (0 < x < Jq. (32) 

For the heat equation, the best convergence properties (without oscillations) have 
been obtained by setting 6 = w = 1.55, which gives Q = 6.9. Figure 2 shows the 
convergence of the solutions obtained by application of the regular MacCormack 
scheme and the over-relaxation scheme. For the case presented, the over-relaxation 
process actually multiplies the rate of convergence by a factor of at least 10. Conver- 

.e 
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.I 

2 

2 .I .6 .8 
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FIG. 2. Solutions to the heat equation obtained by application of the regular MacCormack 
scheme and the over-relaxation scheme. 



320 DkSIDkRI AND TANNEHILL 

gence can also be obtained with larger values of the over-relaxation parameters, 
provided that w < 2 and w -C 2. However, for these large values, the numerical 
solution converges to steady state in an oscillatory manner, which effectively decreases 
the rate of convergence. 

The results for the linearized Burgers’ equation are similar to those obtained for the 
heat equation. However, in this case, if rii is set equal to o, the optimum value of the 
over-relaxation parameters is very close to the limit of stability. For the case presented 
in Fig. 3, where cdx/a = 0.5, the maximum allowable time step for the regular 
scheme is given by p -= 0.533. An actual increase in the rate of convergence by a 
factor of 6 is observed in the calculation while Eq. (30) predicts 52 = 5.3. 

I ‘I ‘L 
- REGULIP “WiOWL~~ iiwm - )dtP-Pt :.“:,P’i r,:“EnE i 1.4’) 

3 i,p:, ‘XiO..‘.II,I lULli 0 i,bc- .-i4:‘.“1. .:: i 

FIG. 3. Solutions to the linearized Burgers’ equation (CL/O = 10) obtained by application of the 
regular MacCormack scheme and the over-relaxation scheme. 

FIG. 4. Nonlinear Burgers’ equation. 
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The nonlinear Burgers’ equation with u&a = 10 and Ax/L. = 0.05 has been 
integrated using the over-relaxation technique. For this case the experimental stability 
limit corresponds to ~1 = 0.52, but the condition p = 0.5 has been used for simplicity. 
Using w = w = 26/17 the rate of convergence is increased by a factor of 6.5, as 
shown in Fig. 4, and this agrees with the prediction of Eq. (30). It appears that 
Eq. (30) may underestimate the actual improvement obtained by applying over- 
relaxation. However, when the convergence of the numerical solution to steady state 
is slow (as in Fig. 4), this estimate is accurate because the passage to the limit 
D n+1 + 51 is justified. 

In all cases, the steady-state solutions obtained by application of the regular scheme 
and the over-relaxation scheme are identical at all the grid points to at least six 
significant figures. 

NAVIER-STOKES SOLUTIONS 

The implementation of the over-relaxation scheme to an already existing computer 
program applying MacCormack’s method is straightforward. Apart from an 
initialization procedure, it only requires the addition (or modification) of the two 
statements defined by Eqs. (4) and (6). 

Hypersonic Viscous Flow over the Sharp Leading Edge of a Flat Plate 

The present over-relaxation technique has been used to compute the hypersonic 
viscous flow over the sharp leading edge of a flat plate [5-61. The flow conditions are 
those of [S, Case I], i.e., 

M, = 10.15 (freestream Mach number), 
y = 1.4 (ratio of specific heats), 

Pr = 0.72 (Prandtl number), 
Re, = 4656/ft (freestream Reynolds number), 

pm = 0.0557 lb/ft2. (freestream pressure), 
T, = 250”R (freestream temperature), 
T, = 540”R (wall temperature). 

Figure 5 illustrates the computational domain which extends from the sharp 
leading edge to a point in the merged layer. This flow field cannot be calculated 
correctly using the boundary-layer equations or the thin-layer equations. At least the 
complete Navier-Stokes equations must be used. Even these are not valid in the 
rarefied region at the leading edge, but they appear to give reasonable results. 

It was found that the regular MacCormack scheme required about 700 steps to 
converge to steady state when operating at the experimental stability limit. Utilizing 
the same stability limit, the scheme operating with 0 = 2w = 1.8 has been found 
stable and convergent. This scheme was expected to be Sz = 3 times faster, according 
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FIG. 5. Computational domain used in the calculation of the flow over a flat plate. 

HVPEP.SM(IC 
FREESTREM 
(Mm >b 1) 

- 

ISOTHERPAL 'ALL 
(SLIP CONDITIONS) 

to Eq. (30), than the regular scheme and this was achieved in the computation. This 
is clearly demonstrated by Fig. 6 which shows the time history of the pressure distri- 
bution along the plate obtained by application of each scheme. The converged distri- 
butions (normal to the wall) of pressure at three different stations along the plate 
are shown in Fig. 7. Identical steady-state solutions are observed. 

In conclusion, the over-relaxation procedure has reduced the computing time by a 
factor of 3 for this particular problem. 

The Znviscid Flow over a Wedge 

The inviscid flow over a wedge at supersonic speed (Fig. 8) has been computed 
using the present over-relaxation technique. The computer program is due to 
R. G. Hindman of Iowa State University. The case under study is defined by 

Mm = 2 (freestream Mach number), 
pm = 2117 lb/ft” (freestream pressure), 

P - 0.002377 slugs/ft3 m- (freestream density), 
u - 2233 ft/sec m- (freestream x component of velocity), 
v, = 0 (freestream y component of velocity), 
ew = 5” (wedge half-angle). 

This problem does not fall into the class of problems where the computing time to 
obtain the steady-state solution is large. This is due to the absence of viscous effects 
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FIG. 6. Tie histories of the pressure distribution along the plate obtained by applying the 
regular and the over-relaxation schemes (E = 2~ = 1.8). 

FIG. 7. Steady-state pressure distribution normal to the plate. 

/ 9 (b) 

FIG. 8. Flow pattern and computational mesh for wedge problem. 
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(no stress tensor to evaluate and no “viscous” stability limitation), and to the fact that 
only one spatial coordinate (the polar angle 0) needs to be retained because the flow 
is conical. The principal interest, here, has been to test the applicability of the over- 
relaxation technique to an inviscid flow problem with a sharp discontinuity (the 
shock wave). 

This problem is governed by the Euler equations which are obtained by dropping 
the viscous terms in the Navier-Stokes equations. Polar coordinates have been 
employed with radial derivatives omitted for this conical flow. 

When operating at the experimental stability limit, Atmax, the regular MacCormack 
scheme requires 440 steps to converge (to four significant figures). Successful results 
have been obtained by applying over-relaxation to the corrected values (W = 1 
and w > 4). The fastest scheme operates with dt = 0.8 Atmax and Q = 2w = 1.90. 
This scheme, which requires 280 steps to converge to four significant figures, is 
1.57 times faster than the regular scheme. The converged pressure distributions 
obtained by application of both schemes are shown in Fig. 9. Slightly larger dispersive 
errors near the shock appear in the solution obtained by the over-relaxation scheme. 
These inaccuracies are not directly due to the application of over-relaxation but 
are due to the smaller time step which was used in order to maximize the rate of 
convergence. However, the shock is correctly located and the values for the pressure 
behind the shock obtained by both methods match. Figure 10 shows the solution 

m,“,, ..,.,,” . 

FIG. 9. Steady-state pressure distribution obtained by application of the regular scheme and the 
fastest over-relaxation scheme. 

FIG. 10. Steady-state pressure distribution obtained when the regular method is used to terminate 
the iterative process. 
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obtained after 270 applications of the fastest over-relaxation scheme (dt = 0.8 dt,J 
and 30 applications of the regular method (d t = dtmsx). This method produces the 
same value for the pressure behind the shock in 300 steps, which is 1.47 times faster 
than the regular scheme. This process reduces significantly the small difference between 
the two steady-state solutions in Fig. 9. 

CONCLUSION 

This study has shown that the rate of convergence to the steady-state solution 
using MacCormack’s finite-difference scheme can be significantly increased by 
applying an over-relaxation procedure. The implementation of this acceleration 
procedure to an existing computer program is extremely simple. Apart from some 
initialization statements, it requires the modification of only two computer cards and 
no additional storage. In its general form, the scheme includes the regular method as 
a particular case. 

With respect to the time-dependent equations of motion, the scheme becomes 
first-order accurate in time, but remains second-order accurate in space when over- 
relaxation is only applied to the sequence of corrected values. However, in the limit 
(as t tends to infinity), second-order accuracy is maintained. In particular, if an equal 
time step is employed, the over-relaxation scheme produces the same converged 
solution as the regular scheme but with fewer computations. The study of Burgers’ 
equation has shown that the over-relaxation process gives better improvement in rate 
of convergence when fine meshes are employed. An example problem has been 
presented, where the process multiplies the rate of convergence by a factor of 6.5. 
Application of the over-relaxation scheme to the calculation of the hypersonic viscous 
flow over a flat plate and the inviscid flow over a wedge, resulted in reductions of 
computing time by factors of 3 and 1.5, respectively. It appears that the scheme is 
better suited to problems where the solution converges slowly and monotonically 
to steady state, which is typical of most viscous-dominated problems. 
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